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Louis Bernatchez2,‡ and Steeve D. Côté1,‡
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Landscape heterogeneity plays a central role in shaping ecological and evol-

utionary processes. While species utilization of the landscape is usually

viewed as constant within a year, the spatial distribution of individuals is

likely to vary in time in relation to particular seasonal needs. Understanding

temporal variation in landscape use and genetic connectivity has direct con-

servation implications. Here, we modelled the daily use of the landscape by

caribou in Quebec and Labrador, Canada and tested its ability to explain the

genetic relatedness among individuals. We assessed habitat selection using

locations of collared individuals in migratory herds and static occurrences

from sedentary groups. Connectivity models based on habitat use outper-

formed a baseline isolation-by-distance model in explaining genetic

relatedness, suggesting that variations in landscape features such as snow,

vegetation productivity and land use modulate connectivity among popu-

lations. Connectivity surfaces derived from habitat use were the best

predictors of genetic relatedness. The relationship between connectivity sur-

face and genetic relatedness varied in time and peaked during the rutting

period. Landscape permeability in the period of mate searching is especially

important to allow gene flow among populations. Our study highlights the

importance of considering temporal variations in habitat selection for optimiz-

ing connectivity across heterogeneous landscape and counter habitat

fragmentation.
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1. Introduction
Preserving and restoring connectivity for broad-scale ecological processes, such as

dispersal and gene flow, has become a major conservation priority [1]. A major

impediment to this goal is the difficulty in predicting how different land use,

climate change or reserve design scenarios will affect connectivity. Conservation

planning decisions are thus often made without quantifying benefits for the

ecological processes they are meant to be conserving. A lack of connectivity can

have dramatic consequences on populations, notably because of the reduction of

gene flow, which leads to greater inbreeding and loss of genetic diversity through

increased genetic drift within fragments [1,2]. The consequences of fragmentation

can even lead to the local extirpation or extinction of species [3].

Landscape genetics is a synthetic methodological approach that combines

concepts and tools from population genetics, landscape ecology, geography

and spatial statistics to guide management decisions in identifying where

best to set aside movement corridors, construct habitat linkages and otherwise

promote connectivity [4–6]. These methodologies examine how landscape
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Figure 1. Map of genetic sample locations of caribou in Québec and Labra-
dor, eastern Canada. Grey squares: Rivière-aux-Feuilles migratory herd; grey
dots: Rivière-George migratory herd; black squares: forest-dwelling caribou;
black triangles: mountain caribou. The annual ranges of migratory herd
are delineated by dotted and dashed contour lines for the Rivière-aux-Feuilles
and the Rivière-George herds, respectively.
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features affect recurrent microevolutionary processes (includ-

ing gene flow, genetic drift and selection) in a spatially

explicit manner at multiple spatial and temporal scales [5–7].

This qualitative approach, however, has been shown to

suffer from lack of repeatability and poor performance in

describing actual landscape costs of movements [8]. Some

studies have begun to use radio-telemetry data to identify

key environmental factors for constructing more objective

models of habitat use [9,10]. A method commonly used to

study terrestrial wildlife is to build habitat suitability models

(HSMs; [11]) to infer a species’ preferred habitat. Weckworth

et al. [12] have recently demonstrated the superiority of

HSMs over the null isolation-by-distance (IBD) model in pre-

dicting genetic structure in woodland caribou (Rangifer
tarandus). Using HSMs based on radio-telemetry data inform-

ing on connectivity may circumvent prior limitations in

landscape genetics research. This association is particularly

attractive, because genetic data offer a means to validate

spatially explicit connectivity models, whereas environmental

data can be used to select and score habitat variables used in

landscape genetic studies [10]. Collectively, merging HSMs-

and genetic-based information allow for better inferences on

whether habitat selection actually facilitates or limits gene

flow [4] and what specific habitat variables would favour the

maintenance of connectivity.

In addition, landscape genetics studies rarely consider

annual migrations, variations in seasonal range or habitat

use when implementing models (but see [10] for a compara-

tive approach) although animals may use substantially

different habitat among seasons [13,14]. This is particularly

problematic when species exhibit variable seasonal response

to landscape features or do not select the same habitat

types all through the year [14,15]. Annual-based analysis of

species distribution that show important temporal variations

in distribution may lead to model uncertainty [16], thus

impeding our ability to infer about the effects of landscape

connectivity on gene flow. To circumvent this limitation,

HSMs should be developed for multiple time periods

expected to be biologically relevant when species behaviour

may differ sensibly.

Here, we explore the landscape genetic structure of caribou

in Québec and Labrador. We used ARGOS radio-telemetry

data from more than 500 migratory tundra caribou and cap-

ture locations of forest-dwelling and mountain caribou to

construct HSMs for caribou at the landscape scale. Pathways

based on least-cost distance and circuit theory between indi-

viduals were constructed, and correlated to levels of genetic

relatedness. Using this approach, we addressed the following

questions: (i) is habitat suitability a good predictor of gene

flow? (ii) do seasonal patterns of habitat selection differ in

their ability to predict gene flow? and (iii) how do landscape

connectivity models compare with null models of genetic

differentiation? Based on caribou ecology, we predicted that

(i) models based on locations during the rut will be the best

predictors of genetic relatedness as roving males sire offspring

(Espmark 1964); (ii) summer models will be better predictors

than winter models, because movement is restricted during

winter [17] and this is when range overlap between different

herds increases [18]; (iii) patterns and predictive ability of

models will vary between males and females because of

sex-based differences in habitat suitability [19]; (iv) habitat

selection models of males will be better than those of females,

because gene flow is male-mediated [20]; and (v) the
habitat selection models will outperform the null (IBD and

isolation-by-barrier, IBB) models of genetic differentiation [12].
2. Methods
(a) Study area and species
Caribou (R. tarandus) rank among the most mobile terrestrial

mammals. In eastern North America, three ecotypes are pre-

sent: migratory caribou, mountain caribou and forest-dwelling

sedentary caribou [21]. The migratory barren-ground ecotype

undertakes long-distance seasonal migrations of hundreds of kilo-

metres (up to 2500 km) between summer range in the tundra and

winter range in the boreal forest. Migratory females breed in late

October during the autumn migration. They return to the tundra

in spring, aggregate on the way to calving grounds, and in June,

they calve on traditional calving grounds. By contrast, the moun-

tain ecotype undertakes altitudinal movements associated with

food availability and predation avoidance, but usually stays in

the same alpine area. The sedentary ecotype resides in the boreal

forest throughout the year, and females perform short-distance

migrations in spring to space away from conspecifics and preda-

tors [22]. The study area encompassed an approximately

1 365 000 km2 region in Quebec and Labrador, Canada (figure 1)

that represented a broad diversity of ecosystems in eastern North

America, ranging from southern boreal forest and mountain

habitat (478 north) to northern Arctic tundra (628 north).

(b) Genetic data
We obtained tissue samples of 480 caribou representative of the

three ecotypes found in Quebec/Labrador (figure 1 and table 1).
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Table 1. Number of caribou analysed. (For migratory caribou, the number of individuals genotyped and fitted with ARGOS-telemetry collars is given by sex and
herd, respectively. Values between brackets indicate number of caribou for which we had both genetic information and ARGOS locations (see text). For
sedentary forest-dwelling and mountain caribou, the number of individuals genotyped is given by sex and herd, but for these individuals, sampling location
was used for habitat-suitable models.)

sex ecotype herd
no. genotyped
individuals

no. radio-collared
individuals

no. ARGOS
fixes

all individuals migratory Rivière-George 70 [30] 296 [30] 37 711 [2230]

Rivière-aux-Feuilles 77 [32] 233 [32] 25 216 [1883]

forest-dwelling 316 — —

mountain Gaspésie 27 — —

Torngat 23 — —

females only migratory Rivière-George 52 [12] 243 [12] 32 560 [952]

Rivière-aux-Feuilles 58 [13] 162 [13] 19 927 [1168]

forest-dwelling 268 — —

mountain Gaspésie 16 — —

Torngat 16 — —

males only migratory Rivière-George 18 [18] 53 [18] 5151 [1278]

Rivière-aux-Feuilles 19 [19] 71 [19] 5289 [715]

forest-dwelling 15 — —

mountain Gaspésie 11 — —

Torngat 7 — —
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The sampling included: two migratory tundra herds: the Rivière-

George (n ¼ 70) and the Rivière-aux-Feuilles (n ¼ 77) herds; two

mountain caribou populations: Torngat Mountains (n ¼ 23) and

Gaspésie (n ¼ 27), as well as 316 sedentary forest-dwelling caribou

inhabiting the boreal forest of Québec and Labrador. The genetic

data used here are from individuals PCR amplified and genotyped

at 16 polymorphic microsatellite loci, following Yannic et al. [23].

We assessed deviation from Hardy–Weinberg equilibrium and

linkage disequilibrium using GENEPOP v. 4.0 [24]. Genetic related-

ness among all pairs of sampled individuals was calculated

using Lynch & Ritland’s [25] estimator with COANCESTRY v. 1.0

[26]. The accuracy of relatedness metrics has been shown to vary

among datasets (reviews in [27,28]), and more specifically in a

landscape genetic context [29]. We selected the Lynch and Rit-

land’s r coefficient index, because this estimator has been proved

to be an adequate marker-based estimator of relatedness in natural

populations and often outperforms other estimators [25,28].
(c) Model fitting and habitat suitability maps
Using satellite-tracking collars for migratory caribou and sampling

locations for forest-dwelling and mountain caribou, we fitted daily

HSMs on a sliding window of +3 days for the complete dataset

and for the sexes separated. To fit the models, we used the

locations of 296 caribou (53 males and 243 females) of the

Rivière-George herd and 233 caribou (71 males and 162 females)

of the Rivière-aux-Feuilles herd fitted with satellite collars

(ARGOS, Largo, MD; table 1). At the scale of the study, we used

only movements performed by migratory caribou and considered

forest-dwelling caribou and mountain caribou as strictly sedentary

all year round (table 1). For each Julian day, we derived HSMs for

all individuals, for females only and for males only.

We computed environmental layers for the study area. We

used generalized linear models (GLM [30]) as implemented in

R [31], because they provide parameter estimates that are easy

to interpret and allow investigation of the variance explained

by each model component. We modelled the distribution of the
caribou using the 12 environmental variables, some being

temporally dynamic (snow cover, normalized difference veg-

etation index (NDVI), temperature, precipitation) others being

static (elevation, proportion of the different land cover categories;

electronic supplementary material, table S1). Those variables are

recognized as important predictors of caribou habitat suitability

and are likely to enhance or impede caribou movement [32–34].

We obtained 1095 HSMs, resulting from the combination of

Julian days and sex (i.e. from the whole dataset and from the

sexes separated). We used k-fold cross-validation to evaluate

habitat model performance [35]. We evaluated the predictive per-

formance of each model using a repeated split sampling approach

in which models were calibrated over 70% of the data and

evaluated over the remaining 30%. This procedure was repeated

five times. Because the models were built with pseudo-absences,

we used the true skill statistics (TSS) as the predictive performance

metric [36,37]. In addition, we compared the habitat model fits

estimated with the coefficient of determination R2.
(d) Statistical analyses
We first constructed two null landscape genetics models. The

first, an IBD model, was created by calculating Geodesic dis-

tances between individuals based on great circle distances

according to the ‘Vincenty (ellipsoid) method using the package

‘geosphere’ 1.2–27 implemented in R. The second, an IBB model,

took into account the effect of the St Lawrence River, which is an

impassable barrier dividing the study area (figure 1). If the com-

pared individuals were separated by the river they were coded

with a 1, with other individuals coded with a 0 [38]. We next

examined the influence of connectivity; landscape connectivity

models were based on conductance surfaces from 10 km cells

using the HSM maps. Least-cost paths were calculated between

all individuals using the costDistance function implemented in

the ‘gdistance’ 1.1–4 package of R; this produces a single, pair-

wise conductance score between each pair of individuals

(hereafter referred to as ‘least-cost path’). We finally used circuit

http://rspb.royalsocietypublishing.org/
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Figure 2. Maps of suitable surfaces for caribou in Québec/Labrador. (a) The winter habitat suitability model (HSM) map, (b) The calving season HSM map, and
(c) the rutting period HSM map. (Online version in colour.)
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theory [39,40], which does not rely on a single pathway to esti-

mate connectivity distances between all individuals (hereafter

referred to as ‘circuit theory’). This distance reflects the average

travel time from origin to goal following a (Brownian) random

walk [39,40]. Using the same conductance matrix used for esti-

mating least-cost distance, we calculated the connectivity

distance between all individuals using the commuteDistance func-

tion implemented in ‘gdistance’. This function is related to the

procedure implemented in CIRCUITSCAPE [40]. Connections were

allowed between all eight surrounding cells of each pixel.

Based on the assumption that the model with the best support

should exhibit not only the highest simple correlation with gen-

etic distance, but also a significant, positive partial correlation

with genetic distance after controlling for each of the competing

models, we employed causal modelling to identify the most

influential variables associated with gene flow within a multiple

hypothesis-testing framework as applied by Cushman et al. [41].

We evaluated the significance of correlations and partial corre-

lations using Mantel [42] and partial Mantel tests, computed

using the R library ‘ecodist’ [43] with 10 000 randomizations.

We evaluated the predictive power of models using a

repeated split sampling approach in which models were cali-

brated over 70% of the data and evaluated over the remaining

30%. This procedure was repeated 10 times for the whole dataset

and for the sexes separated. We then tested the effect of geo-

graphical distances (i.e. geodesic distance, least-cost-path or

circuit connectivity) and biological seasons (see the electronic

supplementary material, figure S6) on the Mantel’s r coefficients

using GLMs in R. We used Spearman rank–order correlation as

the predictive performance metric between predicted values

obtained by GLMs on the training datasets and the observed

values obtained from the test datasets. As GLM does not provide

R2-values, we computed the explained variance as: R2 ¼ 1 –

(A/B), where A ¼ sum [(valuesobserved – valuespredicted)2] and

B ¼ sum [(valuesobserved – mean(valuesobserved))2] to estimate

the proportion of variance explained by our models.

Among the 296 migratory caribou used to fit the daily HSMs, we

had a 16 locus genotype for a subset of individuals only (n ¼ 62).

Similarly, we did not have the daily locations of all genotyped

migratory caribou. To overcome this problem, for each focal day,

we randomly sampled nleaf¼ 77 and nGeor ¼ 70 ARGOS-satellite

positions for the Rivière-aux-Feuilles and Rivière-George herds,
respectively (table 1). Then, we randomly assigned a 16 locus geno-

type to these daily locations. For forest-dwelling and mountain

caribou, geographical sampling corresponded strictly to the genetic

sampling. To ensure that this procedure did not affect the results,

we repeated the analyses with a subset of the data (n ¼ 140),

including the 62 satellite-collared caribou, for which we had a

corresponding genotype.
3. Results
(a) Habitat suitability models
Predictive power of the daily models was high. The mean TSS

index from fivefold cross-validation was 0.62 (CI95%: 0.61–

0.63), indicating that the model adequately predicted habitat

use by caribou. The explained deviance ranged from 0.16 to

0.46 (R2 mean: 0.29, CI95%: 0.28–0.30). Both the predictive

power (TSS) and the coefficient of determination of the

models (R2) were not constant over time, with a maximum

around Julian day 200 and lower values during the winter, indi-

cating that habitat selection in regards to the environmental

features included in the models was more pronounced in

summer than in winter (figure 2). Similarly, the relative contri-

bution of each variable to the models changed over the seasons

(electronic supplementary material, figure S1). All variables

except altitude were particularly good predictors of caribou

habitat selection during the calving period, and snow cover

also influenced habitat selection during the rut and autumn

migration. Altitude consistently had a low influence on caribou

habitat selection throughout the year.
(b) Genotyping and metrics of relatedness
All markers were in Hardy–Weinberg equilibrium,

with none of 120 comparisons showing evidence of linkage

disequilibrium after Bonferroni correction [44]. Diversity stat-

istics for each locus are found in the electronic supplementary

material.
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(c) Landscape genetic models
The null IBD models along with the HSMs based on least-cost

path and circuit theory models are presented in figure 3 and

table 2. Circuit theory models improved the IBD models by

17–18% for females and 33–35% for males. By contrast,

least-cost path models yielded no or weaker improvements to

the null IBD models (figure 4 and table 2). The best predictors

of genetic relatedness were circuit theory models centred on the

calving (Julian days 155–190) and the rut (Julian days 260–

300) habitat selection, whereas winter-based models (Julian

days 355–110) were the poorest (figure 3). Sex-based models

showed similar trends, except that male models explained

more variance in relatedness than female models (table 2).

The IBB model that accounted for the effect of the St Lawrence

River separating different herds explained a significant part of
the genetic distance among individuals (Mantel r: 20.125, p ,

0.001, b ¼ 20.055). The analyses performed on the data subset

(n ¼ 140), notably including the 62 satellite-collared caribou,

for which we had a genotype, and the random subset of

forest-dwelling and mountain caribou (n ¼ 78) did not alter

the overall results obtained with the whole dataset (electronic

supplementary material, figure S2). The best predictors of gen-

etic relatedness were still circuit theory models centred on the

calving and the rutting habitat suitability, whereas winter-

based models were the poorest. Predictive power of the

models was high (see the electronic supplementary material).

Repeated split sampling approach indicated a high congru-

ence between predicted and observed Mantel’s r coefficients

for the whole and female datasets, and to a lesser extent for

the male dataset owing to the lower sample size for males

http://rspb.royalsocietypublishing.org/


Table 2. Results from distance and landscape-based connectivity models (least-cost paths and circuit theory) in caribou, along with the null models of
differentiation looking for a correlation between geographical distance and genetic relatedness. (Simple Mantel’ r and p-values are provided; all daily models are
highly significant (*p , 0.0001; n ¼ 365). The slopes are calculated from linear regressions between geographical and genetic distances.)

modela Mantel’s r p slope p

IBB barrier 20.06 ,0.0001 20.02 ,0.0001

IBD distance 20.20+ 0.02 ,0.0001* 24.58 � 1028+ 3.86 � 1029 ,0.0001*

distance F 20.20+ 0.02 ,0.0001* 24.62 � 1028+ 3.33 � 1029 ,0.0001*

distance M 20.28+ 0.03 ,0.0001* 27.67 � 1028+ 7.62 � 1029 ,0.0001*

least-cost path least-cost path 20.19+ 0.03 ,0.0001* 24.28 � 1024+ 5.65 � 1025 ,0.0001*

least-cost path F 20.20+ 0.02 ,0.0001* 24.34 � 1024+ 3.73 � 1025 ,0.0001*

least-cost path M 20.27+ 0.04 ,0.0001* 27.25 � 1024+ 8.55 � 1025 ,0.0001*

circuit theory circuit theory 20.25+ 0.01 ,0.0001* 25.25 � 1027+ 3.61 � 1028 ,0.0001*

circuit theory F 20.25+ 0.01 ,0.0001* 25.04 � 1027+ 3.23 � 1028 ,0.0001*

circuit theory M 20.41+ 0.02 ,0.0001* 29.18 � 1027+ 6.59 � 1028 ,0.0001*
aModels for which the sex (F for female and M for male) is not denoted are based on all individuals.
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Figure 4. The relative Mantel’s r coefficients estimated from the correlation
of genetic versus the three geographical distances between pairs of caribou:
geodesic distance (IBD), least-cost path and circuit theory, respectively.
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(see the electronic supplementary material, table S4 and

figure S7). Both geographical distance (i.e. geodesic distance,

least-cost-path or circuit connectivity) and biological season

(see the electronic supplementary material, figure S6) covari-

ates explained 94% of the variance of the Mantel’s r
coefficients for the whole dataset (electronic supplementary

material, table S4).
4. Discussion
When assessing population connectivity, temporal variation

in species habitat utilization is rarely considered, even if

behaviour may vary among seasons within a year [33]. Here,

we showed that the genetic distances among caribou, which

reflect the extent of genetic exchanges over time, were best

explained by landscape features than simple linear distances,

and that this relationship varied within the year. Daily HSMs

indicated that characteristics of the landscape separating popu-

lations best explain genetic distances during the rutting

period, when genetic exchanges are most likely. Our dynamic

temporal approach provided new insights into three interrelated

components: (i) what habitats caribou are selecting, (ii) whether
these patterns of habitat selection predict genetic relatedness,

and (iii) which season is the best predictor of genetic relatedness

for males and females. This information can then be used to

design areas optimizing population exchanges during periods

of the year when they are most needed.

Movement patterns reflect interactions between animals

and their environment [46,47] and understanding them often

requires consideration of the temporal dynamic nature of

environmental conditions among seasons [48,49]. For example,

the spatial distribution of Thomson’s gazelles Gazella thomsonii
in Africa continually changing from month to month, like a

shifting mosaic [50]. Similarly, home-range size of red deer

Cervus elaphus at multiple temporal scales is driven by tem-

porally dynamic variables such as temperature, precipitation,

day length and snow cover [51]. Hence, studies of animal move-

ments can greatly benefit from the incorporation of temporally

dynamic environmental variables. Only a handful of studies

have used HSMs based on satellite-radio-telemetry in a land-

scape genetics framework despite its recognized use [4], and

none of these models explicitly used the telemetry data to

select and score habitat variables for HSMs with the intent of

predicting genetic relatedness throughout the year (but see

[10,12]). Using this combined method, here we showed the use-

fulness of a spatio-temporal approach to determine the most

relevant period and most relevant area for optimizing con-

nectivity among populations. Overall, the combined use of

individual locations obtained with satellite telemetry and gen-

etic data increases the capability of landscape genetics in

elucidating the relationships between landscape heterogeneity

and genetic differentiation in space and time.

Our analyses showed changes in habitat selection and

an increase of the correlation between habitat selection

and relatedness during the rut. Avgar et al. [33] demonstrated

changes in rates of movement in caribou according to seasonal

environmental conditions. Comparisons among the movement

characteristics of different ungulate species suggest that major

classes of movements, such as migration and nomadism, might

reflect an adaptation to the spatio-temporal dynamics of

resource distribution across the landscape [48,52]. Here, we

further showed that HSMs during the rut were the best

http://rspb.royalsocietypublishing.org/
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correlates of genetic distance, probably because the composition

of groups is changing more at that time than during other

periods [53,54], and males move between female groups to

find mates and sire offspring [55]. Excursions by migratory indi-

viduals into the ranges of sedentary and mountain caribou

during the rut have also been revealed by radio-telemetry [18],

suggesting possibilities of gene flow between ecotypes. Field

observations of rutting caribou indicate that during herding,

mating is greatly intensified and the general pattern of courtship

behaviour exhibited in static groups does not occur [54]. The

maintenance of movements, as well as high density, appears

to be important for changes to caribou during the rutting

season. Our results suggest strong relationships between relat-

edness and habitat selection while controlling for the distance

(causal modelling in the electronic supplementary material,

figure S3 and table S3), implying clear habitat preferences

during the rutting period. This result could be explained by

the gathering of animals of the same herds (higher relatedness

within herds than among herds) after a period of nomadism

and interherd range overlap during the summer [18].

The best HSMs in terms of fit and predictive power were

obtained for the rutting and calving periods. These obser-

vations are in agreement with the observed high fidelity to

calving [56,57] and rutting spaces exhibited by forest-dwelling

caribou, and the high fidelity to calving ground displayed by

migratory caribou [58,59]. Return to traditional calving

grounds has been regarded as one of the most consistent beha-

viours of migratory caribou [58,60]. Fidelity to calving grounds

is stronger than for other portions of the annual range. Spatial

fidelity of females to calving grounds may confer ecological

benefits such as familiarity to resources and topography,

early access to vegetation green-up and predator avoidance

[61,62]. Our results demonstrated that habitat selection

during the calving period was a good predictor of relatedness

among female caribou, and surprisingly also among males.

By contrast, the predictive power of the HSMs as well as

the relationship with genetic distance were lowest during the

winter. Caribou from different herds may winter in the same

areas (leading to shorter geographical distances and lower

genetic relatedness among individuals), especially migratory

caribou that can spend most of the winter season in the

boreal forest, in the vicinity of forest-dwelling caribou [18].

The location of migratory caribou herds in winter is highly

variable, making it notoriously hard to predict [56,63].

Winter areas occupied by the two migratory caribou herds

have changed substantially over the past 20 years (M. Le

Corre, C. Dussault and S. D. Côte 2014, unpublished data). In

addition, the winter range is approximately 20 times larger

than the summer range, and not all regions of the winter

range are occupied every year [63]. Lower correlation between

habitat selection and relatedness in winter is also reflective of

changes in habitat permeability with season. Permeability is

for instance positively correlated with water cover during the

winter months; lakes may enhance movement when frozen

during winter yet impede it during the summer, and may

also serve as movement corridors in winter. Ice cover has

been shown to enhance movement for caribou in northern

Ontario, where higher movement rates were observed in

winter [33]. Conversely, least-cost paths did not improve IBD

in explaining the observed patterns of relatedness in time

and space. Circuit theory integrates all possible pathways

into distance calculations and wider habitat swaths connecting

individuals, whereas least-cost distances are measured along a
single optimal pathway [39,64], most likely very similar to geo-

desic distance over long distances (see the electronic

supplementary material, figure S2).

The least-cost paths did not explain as much variance as

the circuit-theory-based approach (figure 4). We attribute

these differences to the fact that the scale of the study was

too large for least-cost paths to be effective [4,65] or that the

HSMs-based models produced accurate connectivity surfaces

and the circuit theory paths were a good representation of

those actually used by the animals. This latter point high-

lights perhaps the strongest asset of our approach, which is

that the circuit theory values were based on HSM coefficients

inferred from actual animal location data. As a result, they

have meaningful biological interpretations and, as evidenced

by our study, show that habitat selection is a good predictor

of gene flow. Conversely, least-cost paths did not improve

IBD for inferring gene flow. Circuit theory integrates all poss-

ible pathways into distance calculations, whereas least-cost

distances are measured along a single optimal pathway

[39]. Moreover, circuit theory is a measure of isolation assuming

a random walk, whereas least-cost distances presumably reflect

the route of choice if a disperser has complete knowledge of the

landscape it is traversing. Random walk is more likely reflective

of caribou movement behaviour than straight paths [33,63], at

least during some parts of the year (see also [66]).
5. Conclusion
Landscape features exist at multiple spatial and temporal

scales, and these naturally affect spatial genetic structure

and our ability to make inferences about gene flow. We

have demonstrated how it is possible to use an extensive

dataset of ARGOS-telemetry, remote-sensed environmental

variables and genetic information to link daily local con-

ditions experienced by individual animals across a vast

landscape with genetic relatedness. In particular, our study

highlights the importance of considering temporal variation

in individual habitat utilization for inferring the influence

of landscape features on spatial patterns of genetic variation.

Most landscape genetic approaches (but see [10]) used static

animal locations to infer the effect of landscape on gene

flow, but we have demonstrated the influence of both daily

habitat selection and seasonal behaviour on gene flow.

The approach presented here has several potential appli-

cations. First, protection of habitat must consider the

dynamic use of space by species. As a behaviour-based indi-

cator for habitat preference, our approach might inform the

creation of corridors for fauna or the protection of critical

habitats that optimize connectivity among populations and

counter habitat fragmentation.

Our approach allows mapping of the most suitable habitats

during the periods when connectivity is the most critical for

gene flow among populations. Effective protection of critical

habitats, such as the calving grounds of ungulates, has received

much attention [60,67]. Rutting ranges, however, have a limited

and relatively well-defined geographical extent, often with high

densities of animals, but are not targeted by legislated protec-

tion. Habitat-dependent movement rates could also help with

the development of spatially explicit models of gene flow

across novel or altered landscapes. In addition, our approach

has been tested on a large migratory species, and although it

should be applicable to virtually any taxon, it should be

http://rspb.royalsocietypublishing.org/
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evaluated for other species models and at other spatial scales.

Fuelled by rapid advancement in telemetry, remote sensing

technologies and availability of genetic information, this

approach could significantly help improving our understanding

and conservation of wide-ranging wildlife species.

Animal manipulations followed guidelines of the Canadian Council
on Animal Care.
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fer Monitoring & Assessment network (CARMA), Ministère du
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